OPTIMIZATION WORKSHOP

Intel® VTune™ Amplifier and Intel® Advisor

Kevin O'Leary, Technical Consulting Engineer

S-
~r
(0;

Software
..‘- 'O‘” . D] .. 18.1
']0‘ ; .,O ? 1':'., o
190 : ﬂg 1..‘
0 e, o
7! : 6! Y, '1"("‘)

Changing Hardware Affects Software Development

More cores and wider vector registers mean more threads and more maximum
performancel ... but you need to need to write software that takes advantage of
those cores and registers.

More threads means
more potential speedup.

Intel® Xeon® : 5100 5500 E5-2600 E5-2600 E5-2600 Platinum
Processor 64-bit EES series =ES E5-2600 V2 V3 AVZ 8180

Cores

Threads
SIMD Width

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

The Agenda ——— ~

/ Scalability of Maximum Site Gain Loop Iterations (Tasks) Modeling

Optimization 1017 W (e
‘ / ' i o
. M
' Threading = -
K C ge A e| ® Summary

(Grouping:| Function / Call Stack
CPU Time ¥
| [Function / Call Stack Effective Time by Utilization £
FRONT END BACK END Th e Op Plpelln = @ide @ Poor 8Ok @ideal @Over 5P -0
EXECUTION UNIT RETIREMENT » initialize_2D_buffer

K"‘./. v grid_intersect 3.209s (D 0Os

"g‘ » intersect_objects 3.069s D Os

- ~—=sidsintersect 0.141s | 0s

. . intersect 2.424s D Os
comm Tunin g to the Architectur €. imagepointry 07525 @ o.o...j

= > <
Branches

40 [loop in main at roofline.cpp:247] l_ @ 1 Possib
50 [loop in main at roofline.cpp:247] |—
[loop in main at roofline.cpp:260] l_ @ 1 Ineffe Q & A j
[loop in main at roofline.cpp:273] |— @ 1 Ineffe
\\0 [loop in main at roofline.cpp:256] l_

E Function Call Sites and Loops [] b : VeCtoriZOtion ’
=" [loop in main at roofline.cpp:247] |— ¥ 2 Ineff [| ,
m "

Copyright © Intel Corporation 2019 intel'
*Other names and brands may be claimed as the property of others. L_/

Software

Optimization 101

Take advantage of compiler optimizations with the right flags.

Linux*
-XxCORE-AVX512
-xXCOMMON-AVX512
-fma

-02

-g

Windows*
/QxCORE-AVX512
/QXCOMMON-AVX512
/Qfma

/02

/7

Description

Alternative, if the above does not produce expected speedup.

Optimize for speed (enabled by default).

Optimize for Intel® Xeon® Scalable processors, including AVX-512.

Enables fused multiply-add instructions. (Warning: affects rounding!)

Generate debug information for use in performance profiling tools.

Use optlmlzed libraries, like Intel® Math Kernel L|brary (MKL).

* BLAS

* LAPACK

* ScalLAPACK

» Sparse BLAS

* Sparse Solvers

* |terative

* PARDISO*

* Cluster Sparse Solver

e Multidimensional
e FFTW interfaces
e Cluster FFT

» Trigonometric * Kurtosis » Convolution

» Hyperbolic * Variation coefficient * Pooling

* Exponential * Order statistics * Normalization
* Log * Min/max * RelLU

* Power * Variance- * Softmax

* Root covariance

* Vector RNGs

* Splines
* Interpolation
* Trust Region
* Fast Poisson
Solver

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

D——/—D

S @

Software

Adding Threading with Intel® Advisor

» Find good threading sites with the Survey analysis, then annotate the code
to tell Advisor how to simulate threading and locking.

» Use the Suitability analysis to predict threading performance and the
Dependencies analysis to check for correctness problems.

] sui
Maximum Program rget System: | CPU v| | Threading Mode: |intel TBB ~ CPU Count:

Gain For All Sites: 5.74x

ite Label | Source Location Impact to Program Gain T
‘Talal Serial Time |Tcta| Parallel Time ‘Slte Gain ‘Palallel Time

lve ngueens_serial.cpp:... 5.74x 5229 0.777s 6.73x 0.777s

Serial time: 5.391s
Predicted Parallel time: 0.938s

Site Performance Scalability

---- iac Runtime Modeling B

Pvg tration Type of Change Gain Benefit if Enabled

125%

16x ration: (Task) Duration: I:‘ Reduce Site Overhead

8 0.374s I:‘ Reduce Task Overhead
=
2 0.008x []Reduce Lock Qverhead
£ 0.040x
3 0.200x ["]Reduce Lock Contention
[1x (0.374s)
T 5x
o 25x
s 1

Rop

Copyright © Intel Corporation 2019

; , 4 (intel)
Other names and brands may be claimed as the property of others. O
T

- /13 Software

Using Intel® VTune™ Amplifier for Threading

Optimization

Use Threading analysis to see how well your
program is using its threads.

Each thread is displayed on the timeline, with
color coded activity.

= Coarse-grain locks indicate that your
program is effectively single threaded.

» Thread imbalance is when the application
isn't using all the threads all the time.

Lock contention means your program is
spending more time swapping threads out
than actually working.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

D——/—D

Coarse Graln Locks

Thread

PG G- Ss

mainCRTStartup (Ox2cd
0)

OMP Worker Thread #1
(01790}

R
- IR

T " ¥
Bs 6.55 7s

7.55

OMP Worker Thread #2
(0x228c)

OMP Worker Thread #3
(031 d74)

I B
rker Threa. ! - ‘v

[~] Thread

Thread

mainCRTStartup (Oxlcc
4]

OMP Worker Thread #1
(0:1624)

OMP Worker Thread #2
(0x25c4)

OMP Worker Thread #3
([Dx20f4)

Ml CPU Time
Transr
CPU Usage
ddud CPU Time
Thread Concurrency
Mk Concurrency

tions

ngh Lock Contention

Thread

Qg QG

mainCRTStartup (0x23f ||
0}

OMP Worker Thread #1
(Oxl6d8)

OMP Worker Thread #2
(0:1550) Il
OMP Worker Thread #3 | [il
(0x3234)

T T T T y T T T
2.86s 287s 288s 289s

(T T
IR TArr
Il ||||| ||||I|l|||IH|H|

vl

295 2.915 2.925

R 117 1 '
|| | IIIIIHIHIIIII ||||“-!

Al IIIIHIIHIIII’IIIIfff'

=

[+] Thread

I waits
ks CPU Time
Transi
CPU Usage
duk CPU Time
Thread Concurrency
Ml Concurrency

itions

A

Software

What is the uop Pipeline?

There are multiple steps to executing an instruction.

00— 00—0—0

Fetch Decode Execute Access Memory Write-back

Modern CPUs pipeline instructions rather than performing all the steps for one
instruction before beginning the next instruction.

Instruction 1

The plp Instruction 2 Fetch Decode Execute Access Mem. Write-back |
Fetch Decode Execute Access Mem.

m The Fr - |\] | Fetch Decode Execute to...

Instruction 5 | | Fetch Decode
Instruction 6 Fetch | i : n
= The Batr 0, WITICId EXECULES JIE UUPS. QL€ COTTHELIEU, d Wpsis Ccorglaered “retired.

A Pipeline Slot is a representation of the hardware needed to process a uop.

The Front End can only allocate (and the Back End retire) so many uops per
cycle. This determines the number of Pipeline Slots. In general, there are four.

Copyright © Intel Corporation 2019 intel'
*Other names and brands may be claimed as the property of others. g (>
L ——

3
0 - N Software

Pipeline Slot Categorization -

allocated?

Pipeline slots can be sorted into four
categories on each cycle. uop ever back end
.. retired? stalled?

— Retiring — Back End Bound

— Bad Speculation - Front End Bound res No ves No
Each rv h n ex ran . Bad Back-End Front-End
ac Cate_go y asane peCte_d a ge eI Speculation Bound Bound
of values in a well tuned application.

App. Type: Client/Desktop Server/Database/ High Performance
Category Distributed Computing

4 Retiring 20-50% 10-30% 30-70%
$ Bad Speculation 5-10% 5-10% 1-5%

$ Front End Bound 5-10% 10-25% 5-10%
¥ Back End Bound 20-40% 20-60% 20-40%

Copyright © Intel Corporation 2019 intel-
*Other names and brands may be claimed as the property of others. A (>
[

3
D——/—D Software

Pipeline Slot Categorization: Retiring

This is the good category! You want as many of your slots in this category as
possible. However, even here there may be room for optimization.

FRONT END BACK END
EXECUTION UNIT RETIREMENT
4
/

4
m---------------------¢

m---------------------’/

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. O A (||'|te|
R —— e 1 |

D——/—D Software

Pipeline Slot Categorization: Bad Speculation

This occurs when a uop is removed from the back end without retiring;
effectively, it's cancelled, most often because a branch was mispredicted.

FRONT END BACK END
EXECUTION UNIT RETIREMENT

m---------- 4----------.

m---------- 4----------.

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. O A (|nte| 10
R —— e 1 |

D——/—D Software

Pipeline Slot Categorization: Back End Bound

This is when the back end can't accept uops, even if the front end can send
them, because it already contains uops waiting on data or long execution.

FRONT END BACK END
EXECUTION UNIT RETIREMENT

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

Copyright © Intel Corporation 2019

¢ _ intel) 11
Other names and brands may be claimed as the property of others. 0

D——/—D Software

Pipeline Slot Categorization: Front End Bound

This is when the front end can't deliver uops even though the back end can take
them, usually due to delays in fetching code or decoding instructions.

FRONT END BACK END
EXECUTION UNIT RETIREMENT

4---------------------.
-

~
4---------------------.
-

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. A (|nte| 12
R —— e 1 |

3
D——/—D Software

The Tuning Process

LRl Determine Efficiency
Hotspot

~Intel® VTune™ Amplifier
Microarchitecture Exploration

If Inefficient;

Find Hotspots

Diagnose Bottleneck

Intel® VTune™ Amplifier
Microarchitecture Exploration
Memory Access Analysis

Intel® VTune™ Amplifier
Hotspots Analysis

Vectorization Advisor

Implement Solution

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. O A (|nte| 13
R —— e 1 |

D;D Software

Finding Hotspots

Find Determine Diagnose Implement
Hotspots Efficiency Bottleneck Solution

Use Hotspots analysis. Find where your program is spending the most time to
ensure optimizations have a bigger impact.

» The Summary tab shows a high-level overview of the most important data.

» The Bottom-up tab provides more
detailed analysis results.

Hotspots Hotspots by CPU Utilization v @

Analysis Configuration Collectionlog Summary Bottom-up Caller/Callee TDM

Grouping:| Function / Call Stack

M

— The total amount of time spent in
a function is divided up by how ==
many CPUs were active during
the time the function was running.

Low confidence metrics are grayed *

CPU Time ¥

Function / Call Stack
B idie @ Poor

Ok

sphere_intersect 2.674s D
func@0x69e19df0 1.733s D
Od - S

ELthrrﬂrlD: 13128)
o
WainCRTStartup (TID: 11092)

-
‘ func@0x10061680 (TID: 10540)

Effective Time by Utilization

Bideal B Over

> spin
Time

0Os

Os

Module

Overhead
Time

0Os find_hotspots.exe grid_intersect
0s find_hotspots.exe sphere_interse

Os user32.dll func@Ox6%el! v
>

~

v

WaCPU Time
aiSpin and Overhea--

~

nnnnnnnnnn

out: VTune uses statistical sampling

FILTER

100.0% % | ‘Anme:\/‘ ‘AnyThlead \/‘ ‘AnyMod\/‘ ‘AnyL\/| | ‘USE”UHCV‘ |Funtl|u\/| ‘Showinv

and may miss extremely small, fast portions of the program.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

@

Software

14

Find Determine Diagnose Implement
Hotspots Efficiency Bottleneck Solution

Use Microarchitecture Exploration analysis. It's preconfigured with:

Determining Efficiency

= appropriate events and metric formulae for the architecture

» hardware-specific thresholds for highlighting potential problems in pink

InefﬁCienCy can be Caused by |Bad Speculation » | Back-End Bound | Retiring |
o _ _ 0.0% 0.0% 100.0%
= Not retiring enough necessary instructions. 15.1% 464% 339%
1.6% 47 5% 48.8%
— Look for retiring rate lower than expected value. 20.2% 393%| 405%

= Retiring too many unnecessary instructions. Address | S0 Assembly

. ; Ox1400010f5 58 XOr =ax, eax

— Look for underuse of AVX or FMA instructions. 14000107 |63 vl w0, edx

0x1400010fb 63 vpbroadcastd ymml, xmm0

Copyright © Intel Corporation 2019 intel-
*Other names and brands may be claimed as the property of others. O g (. 15
[

Software

Diagnosing the Bottleneck

Intel® VTune™ Amplifier has hierarchical expanding metrics categorized by the
four slot types. You can follow the pink highlights down the subcategories to
identify the root cause. You can hover over a column to see a helpful tooltip.

Microarchitecture Exploration Microarchitecture Exploration ~ @&
Analysis Configuration Collectionlog Summary Bottom-up EventCount Platform
Grouping:| Function / Call Stack SEIRE
Function / Call Stack Back-End Bound '? Front-End Bound 2 Bad Speculation E | Retiring B
grid_intersect 41.3% 12.5% 13.8% 32.4%
sphere_intersect 26.1% 13.5% 12.8% A7 6%
grid_bounds_intersect 62.9% 10.9% 10.9% 15.3%
tri_intersect 0.0% 46.3% 46.3% 34.7%

We can't cover all solutions today, but there's more information in the Tuning Guides:
https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers

Copyright © Intel Corporation 2019 intel-
*Other names and brands may be claimed as the property of others. O g (. 16
[

D;D Software

https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers

1 Find Det i Di Impl t
Solutions Sampler D -

Core Bound
Divider
* Use reciprocal-multiplication where possible.

Memory Bound

Contested Access/Data Sharing
» Solve false sharing by padding variables to cache
line boundaries.

* Try to reduce actual sharing requirements.

Remote Memory Access Cache Misses

+ Affinitize/pin threads to cores. » Block your data.

* Use NUMA-efficient thread * Use software
schedulers like Intel® prefetches.
Threading Building Blocks. Consider Intel®
Test whether performance Optane™ DC
improves using Sub-NUMA Persistent
Cluster Mode. Memory.

Copyright © Intel Corporation 2019

g - 4 (inteD
Other names and brands may be claimed as the property of others. O
[

D——/—D Software

Understanding the Memory Hierarchy

. Data can be in any level of any core’s cache, or in
Integrated Graphics the shared L3, DRAM, or on disk.

- Core LLC Accessing data from another core adds another
Core LLC layer of complexity

- Core LLC Cache coherence protocols — beyond the scope

Ssnare) . .
Core of today’s lecture. But we will cover some issues
Core LLC caused by this.
Core Core LLC

= o
M

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

S @

Software

[m]

Cache Misses

Why: Cache misses raise the CPI of an application. Focus on long-latency
data accesses coming from 2nd and 3rd level misses

Back-End Bound
Memory Bound « |
L1 Bound ® | L2 Bound | L3 Bound * | DRAM Bound

Store Bound

.7 LR,

0.0% 0.0% 0.0%

What Now: If either metric is highlighted for your hotspot, consider reducing misses:
= Change your algorithm to reduce data storage
» Block data accesses to fit into cache
» Check for sharing issues (See Contested Accesses)
= Align data for vectorization (and tell your compiler)
= Use streaming stores
» Use software prefetch instructions

Copyright © Intel Corporation 2019

: , 4 (intel)
Other names and brands may be claimed as the property of others. O
e

- /1 Software

Categorizing Inefficiencies in the Memory Subsystem

Back-End Bound «
Memory BEound « Core Bound «
» L3 Bound « DRAM Bound « Store Bound « »
L1 Bound L2 Bound) Memory Lat.. «) . Divider Port Utilization
Contested Acc... | Data Sharing | L3 Latency | SQ Full | Memory Band... LLC Miss Store Latency | False Shari.. | Split Sto... | DTLE Store ...
3.2% 0.0% 0.0% 0.0%| 0.0% 02% 0.0% 3.3% 0.0% 0.0% 0.2% 0.0% 26.6%
11.3% 4.8% 0.0% 0.0% 1000% 0.0% 9.5% 0.0% 1.1% 0.0% 0.2% 0.2% 4.8% 17.2%

* Back End bound is the most common bottleneck type for most applications.

* It can be splitinto Core Bound and Memory Bound

« Core Bound includes issues like not using execution units effectively and
performing too many divides.

« Memory Bound involves cache misses, inefficient memory accesses, etc.
« Store Bound is when load-store dependencies are slowing things down.

* The other sub-categories involve caching issues and the like. Memory Access Analysis
may provide additional information for resolving this performance bottleneck.

Copyright © Intel Corporation 2019

g : 4 (intel)
Other names and brands may be claimed as the property of others. 0
[

Software

VTune Amplifier Workflow Example- Summary View

& Memory Access Memory Usage viewpoint (change) @ | E AMPLIFIER 2018
4 Elcollection Log © Analysis Target # Analysis Type & Summar, &3 Bottom-up 2 Platform .y / b
() Elapsed Time : 6.689s
CPU Time ~: 25.121s
v) Memory Bound : 44.4% K of Pipeline Slots
L1 Bound = 0.7% of Clockticks
L2 Bound 0.0% of Clockticks
L3 Bound ~: 30.5% R of (;Im‘.kti%‘ks High percentage of
DRAM Bound ~: 8.0% of Clockticks 15 B cides
Loads: 17,604,528,120 y
Stores: 8,789,663,682
») LLC Miss Count : 46,352,781
Average Latency (cycles) ~: 57
Total Thread Count: 4
Paused Time ~: Os

(v) System Bandwidth
This section provides various system bandwidth-related properties detected by the product. These values are used to define default High, Medium
and Low bandwidth utilization thresholds for the Bandwidth Utilization Histogram and to scale overtime bandwidth graphs in the Bottom-up view.

Max DRAM System Bandwidth —: 80 GB
Max DRAM Single-Package Bandwidth —: 40 GB

Copyright © Intel Corporation 2019 intel'
*Other names and brands may be claimed as the property of others. O) L_/
—

0 - N Software

VTune Amplifier Workflow Example- Bottom-Up View

Over-Time DRAM
Bandwidth

Over-Time QPI/UPI
Bandwidth

Grid Breakdown by
Function
(configurable)

Copyright © Intel Corporation 2019

& Memory Access Memory Usage viewpoint (change) @

Ny b

¢ [collection Log @ Analysis Target /A Analysis Type & S y @ Bottom-up | =4 Platform
D S I[)s lls 2|s 3Is 4|s 5Is 6.5 ~ DRAM Bandwidth, GB/sec
§ » package_0 40.000 ¥ wa Total, GB/sec
% 2010001 . ¥ - Read, GB/sec
% » package_1 ’ o~ Write, GB/sec
z + UPI Bandwidth, GB/sec
é w Total, GBIsec
% ¥ -~ Incoming Data, GB/sec
= ¥ - Incoming Non-Data, ...
[T o ~ Outgoing Data, GB/sec
2 8.728
ki 1
g e i L A A ' A a ikl ¥ ~ Qutgoing Non-Data, ...
U] 8.728
s package_0 ‘ | L R 4 X m + CPU Time
5 a CPU Time
=]
2 package_1 5600.0%
= o I
8 package_0 5600.0%
[#]
Grouping: Function / Call Stack v & Q| Le
Function / Call Stack CPU Time ¥ | Memory Bound | * Loads Stores LLC Miss Count * | Average Latency (cycles) | I\rl
» multiplyl. omp_fn.0 24.920s D 44.2% 17,655,926,662 8,765,362,953 45,902,754 57 matrix.g
p func@0x18c60 0.045s 40.0% 1,800,054 0 0 0 libgomp
p clear_page ¢ e 0.026s 0.0% 0 0 0 0 vmlinux
» copy_page_rep 0.016s 89.0% 0 0 0 0 vmlinux
» ktime_get 0.006s 85.0% 900,027 1,800,054 0 7 vmlinux
» pci_confl_read 0.006s 0.0% 0 900,027 450,027 0 vmlinux
0.006s 0 0 0 0 vmlinux

p apic_timer_interrupt

*Other names and brands may be claimed as the property of others.

Software

VTune Amplifier Workflow Example- Bottom-Up View

o: + 0s 1s | 1.995s [Duration: 0.331s] | 3s 4s
" 40.000
@ p package_0
i b packe] . . Focus on areas of
(L] 40.000 0 0
e P interest with “Zoom
% In and Filter”
o
=
S
[
ol
ol 8.728]
@| » package_1 ‘ L L Zoom In on Selection
o A . . .
Bl) package.0 ms-‘ Fine-grained details
- = A Filter In by Selection - q g
g L ! i in Zoomed-in view
3 Filter Out by Selection
2| package_1 5600.0% m In and Filter In
= | S
S| package 0 5600.0%
& P 20 Dismiss Menu D ——
e
O ——
D4 — 1700ms 1750ms 2802 10ms 1850ms 1300ms 1950ms ¥ DRAM Bandwidth, GB/sec
» package_0 40000 o u Total, GB/sec
40.000° « -~ Read, GBfsec
» package_1 o ~ Write, GB/sec
¥ UP| Bandwidth, GB/sec
package_0 g Total, GBIsec
Total, GB/sec ¥ - Incoming Data, GB/sec
1.232 /sec ~ Incoming Non-Data, ...

4740 Incoming Data, GB/sec # ~ Outgoing Data, GB/sec
» package_1 _—4- 0.046 /sec ' ~ Outgoing Non-Data, .
4740 Incoming Non-Data, GB/sec
¥ package_0 __- s 0.367 ,rsegc ’ ¥ CPU Time

Outgoing Data, GB/sec s CPU Time
package_1 5600.0% 0.432 /sec
= 5600.0% Outgoing Non-Data, GB/sec
BT 0.386 /sec

-PU Time dwidth, GB/sec | DRAM Bandwidth, GB/sec

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

24
VTune Amplifier Workflow Example- Bottom-Up View

& Memory Access Memory Usage viewpoint (change) @ | EAMP 2018
4 Ecollection Log @ Analysis Target A Analysis Type @ Summary @ Eottgm-up #2Platform [multiply.c .y
O+ 0s 1s s & Time (8 5 65 « DRAM Bandwidth, GB/sec

3 » package_0 40.0007 o Total, GB/sec
é - 20.000° e o ~— Read, GB/sec

.| P package_1 ' & ~~ \Write, GB/sec
£
]
H « UPI Bandwidth, GB/sec DRAM and U PI
a ¥ Total, GBlsec Bandwidth are low.
= i » ~ Incoming Data, GB/sec
g » package_1 s | Lo 1)) M # ~ Incoming Non-Data, G..
(5] 8.728] & ~ Qutgoing Data, GBlsec

’ » package_0
£ packag ‘ L L i ad i N il ¥ ~ Outgoing Non-Data, G...
5 & CPU Time
@ CPU Time

8 package 1 5600.0%
S —_—
> package 0 5600.0%
(8]
Grouping: Function Call Stack J[%[a Memory Bound function.

Function / Call Stack CPU Time ¥ Memory Bound * Stores LLC Miss Count /| Average Latency 44% of plpellne slots are
» multiplyl._omp_fn.0 24920 YD 17,555,926,662| 8,765,362,953| 45,902,754 stalled
» func@0x18c60 0.045s 40.0% 1,800,054 0 :
» clear_page_c_e 0.026s 0.0% 0 0
» copy_page_rep 0.016s 89.0% 0 0
» kiime_get 0.006s 85.0 900,027 1,800,054
» pci_confl_read 0.006s 0.0 0 900,027 450,027 Double-click a function
» apic_timer_interrupt 0.006s 0 0 0 .
» init_arr 0.006s 0.0% 0 0 0 for source view.
» init arr 0.006s 0.0% 0 0 0

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

25
VTune Amplifier Workflow Example- Source View

& Memory Access Memory Usage viewpoint (change) @

1 [collection Log @ Analysis Target A Analysis Type & Summary @ Bottom-up ‘=Platform [multiply.c [multiply c

Source Assembly ' 9 2 ¥ Q Assembly grouping: Address

® Memory Bound

S E

T Source CPU Time L1 | L2 L3 |D. Loa.. Sto.

. Bou. Bou. Bound|Bo.
Metrics at a source line
granularity

179 #pragma omp parallel for

180 for{i=0; i<msize; i++) {

181 for(j=0; jemsize; j++) { 0.00-‘-!5|

i]1[i] = i][] i][k] * b[k][i]: , H i \ 0% - - s
183 c[i](3] = c[il[j] + alil[k] * b{kI[j]; ossos[I 2o« 359% 0.0% 17,. 87 Inefficient array access

pattern in nested loop

Copyright © Intel Corporation 2019 intel'
*Other names and brands may be claimed as the property of others. O) L_/
—
Software

Intel® Optane™ DC Persistent Memory

Determine whether your application can benefit from Intel® Optane™ DC
Persistent Memory without the hardware using Memory Consumption analysis.
|dentify frequently accessed objects using a Memory Access analysis.

Memory Mode App Direct Mode

Requires no special programming. Just turn it on
and see if it helps!

Not actually persistent. Acts like an extra layer of
cache between DRAM and disk.

Hottest data should remain in DRAM while the
rest goes to persistent memory instead of disk.

Requires the use of an API to manually control
memory allocation.

Comes in Volatile (non-persistent) and Non-
Volatile (persistent) modes.

Hottest and/or store-heavy objects should reside
in DRAM and the rest in persistent memory.

Non-Volatile Persistent Memory may not behave as expected. Errors can be
detected early using Intel® Inspector — Persistence Inspector.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

[m]

Note: Memory Consumption analysis is not currently available on Windows* operating systems.

Software

26

Solutions Sampler

Find Determine Diagnose Implement
Hotspots Efficiency Bottleneck Solution

Front End Bound

Core Bound Front End Latency
Divider * Use switches to reduce code size, such as /01 or /Os.
 Use reciprocal-multiplication where possible. * Use Profile-Guided Optimization (PGO) with the
compiler.
* For dynamically generated code, try co-locating hot
Memory Bound code, reducing code size, and avoiding indirect calls.

Contested Access/Data Sharing
* Solve false sharing by padding variables to cache

line boundaries.
' i Branch Mispredicts Machine Clears

* Try to reduce actual sharing requirements. _ .
* Avoid unnecessary branching. * Check for lock

* Hoist popular branch targets. contention or

Remote Memory Access Cache Misses
* Use PGO with the compiler. 4k aliasing.

» Affinitize/pin threads to cores. » Block your data.
* Use NUMA-efficient thread + Use software L
schedulers like Intel® prefetches. Retiring

Threading Building Blocks. Consider Intel® You're doing more work than you need to.

Test whether performance Optane™ DC « Use FMAs. Compile with ~fma or /Qfma and the
improves using Sub-NUMA Persistent appropriate —x or /Q0x option.

Cluster Mode. * Take advantage of vectorization with AVX-512!

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Vectorization 101 175337 4

Vector registers and SIMD (Single Instruction Multiple Data) s
instructions allow a CPU to do multiple operations at once.

* Use /OxCORE-AVX512 or -xCORE-AVX512 compiler flags.

— Ifyou don't see the expected improvement, try COMMON-AVX512 instead.
¥ Vectorized

200
“A ic”V 7t Is Not E h & Threaded
o
= utomatic” Vectorization Is Not Enoug
ar
o
& T ... Explicit pragmas and optimization are often required
2 o
I<==1
B 2
Ss X
E B
s —
= <«— Threaded
=}
-~
S50
Vectorized
° < Serial
Intel® Xeon™ Processor Intel® Xeon™ Processor Intel® Xeon™ Processor Intel® Xeon™ Processor Intel® Xeon™ Processor Intel® Xeon® Platinum Processor
X5680 E5-2600 E5-2600 v2 E5-2600 v3 E5-2600 v4 81xx Configurations for
formerly codenamed formerly codenamed formerly codenamed formerly codenamed formerly codenamed formerly codenamed 2010-2017
Westmere Sandy Bridge Ivy Bridge Haswell Broadwell Skylake Server Benchmarks
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer at the end of this
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your tati
contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance RIESENIatioN
Copyright © Intel Corporation 2019 A |

28

*Other names and brands may be claimed as the property of others. O) inte
R e B

- /1 Software

http://www.intel.com/performance

Intel® Advisor

Intel® Advisor is a thread prototyping and vectorization optimization tool. Start

with a Survey analysis.

% Survey & Roofline ™

=

Function Call Sites and Loops

¢ Performance
Issues

Self Time + | Total Time | Type

Vectorization? .| Efficien...

=" [loop in main at roofline.cpp:247]
50 [loop in main at roofline.cpp:247]
15O [loop in main at roofline.cpp:247]

[+ [loop in main at roofline.cpp:260]

[+ [loop in main at roofline.cpp:273]

[510 [loop in main at roofline.cpp:256]
4 >

[@2 Ineffective pe...
[@1 Possible ineffici ...
|7 % 1 Ineffective peel...
’_ ¥ 1 Ineffective peel...

—

4

7.594s 0
751650
0.078s]
3.016s0
248450
0.016s]

7.594sl
751650
0.078s|
3.016s)
24845
3.031s)

Vectorized (Bod... AVX2 1% |1.22x
Vectorized (Body) AVX2
Remainder

Avx2 [[99% | 3.98x
AvX2 [[99%] 3.98x

& inner loop .. hd

Vectorized (Body...
Vectorized (Body...
Scalar

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

S @

Software

Trip Counts...

Trip Counts analysis shows you loop trip counts and call counts. High call
counts amplify the importance of tuning a loop. Scalar trip counts that aren'’t
divisible by vector length cause remainder loops.

@ Perfo...| Self Total Vectorized Loops

[=] Function Call Sites and Loops [. A Type
Issues | Time | Time Vect...|Ef‘ficien...‘Gain E.. - e | Call Count

 [loop in main at roofline.cpp:247] |— “2Ine.. 7.594s 7.594s Vectorized (Bo... AVX2 .1% 1.22x
[= " [loop in main at roofline.cpp:247] |— @ 1Poss. 7.516sl 7.516s| Vectorized (Body) AVX2
[5 O [loop in main at roofline.cpp:247] |— 0.078sl | 0.078s| Remainder

This is especially important with the long vector registers of AVX-512!
*C(gﬁvyerig:atn(?elsn;ildcl?r;p:(;stli?;yzki‘l?laimed as the property of others. O A @

30

Roofline first proposed by University of California at Berkeley:
n F L P Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009
'R Cache-aware variant proposed by University of Lisbon:

Cache-Aware Roofline Model: Upgrading the Loft, 2013

Trip Counts analysis can also collect FLOP and Mask Utilization data.

= Floating-point Operations are used to calculate FLOPS (Floating Point Operations Per
Second)... but Integer operations are also supported!

FLOPS and IntOPS are computation-specific performance measurements.
Collecting them produces a Roofline chart, a visual representation of
performance relative to hardware limits- Performance (GFLOPS) L3 [§|4\ % [| [Use Single-Threaded Roofs © =

4216 Vector FMA Peak (single-thrsadéd): 42.16.GFLOPS

8,0 vector Add Peak {single-thregdad) 72 89 GFLOPS

= The horizontal axis is Arithmetic Intensity, a T 0 veton A g sl g 7556 GELORS
measurement of FLOPs per byte accessed. e) 8

The vertical axis is performance. %ﬁ@wé
. }2@_ew'.‘é“-’-;a@m%%“»a-*"’ o]
= The dots are loops. The lines are hardware et apee
limitations; horizontal lines are compute limits | ° T
. . .. 21 ANBET -
and diagonal lines are memory limits. R iR

Arithmetic Intensity (FLOP/Byte)

Copyright © Intel Corporation 2019

g : 4 (intel)
Other names and brands may be claimed as the property of others. 0
[

D;D Software

31

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

VNNI usage verification by Intel Advisor

B] Summary & Survey & Roofline | [Survey Source: unknown B} Refinement Reports INILL AUVIDUR LU
w /\ Some target modules do not contain debug information * X
Suggestion: enable debug information for relevant modules.
.*l |__ Function Call Sites and Loops r:n‘orm.:n-cc EPU Time Type F:J\‘I: Vectorized Loops Instruction Set Analys!s [
seLes Total Time Self Time Vec, Vecto .| GainE...[VL (V... | Traits Data Ty .. | Vector Widths Instruction Sets w

sl f jitounioreorder kemel_f32 0.0432s - 0.047< I Function Type Comwersions Float3z, .. 128 AV AVISLZF.128; S5E S5E4

s § mkldnecimplocpuetrjit-unireorder_kermel _f32 :prnress_l.nml._genenr_stel 0.001s1 0.000s [Function Floatiz, .. 256 AV AVIZ: AVKSL2F_256

= § mkldnn_primitive.-descicreatesmkldnn:impLicpaciit-avx 31 2.core_xSsEsjé 0010 0.000s (Function Extracts; Shuffles Float32; ... 128/256 AVIC AV AVXS1200. 128; AVX51200.. 21

| § mkldnrcimpliepucijit_avx512_core_xBsBs32x _comvolution_fwd - te{mkld nn_‘ 0.002s | 0.000s [Function Extracts; Shuffles Float32; .. 128/256 AVOG AVE; AVNS12D0_128; AVX51200_29

= (0 [loop in mkldnn_primitive_desc:createcmkldnn:implicpusj it_avxS.'l}_l:urc_l. 2 Possible ineffi.. 0.010s B 0.000s [Vectorized (Body) AVXEL12 4.8 Shuffles 3 Float32; .. 128/256 AV AVICZ: AVI512D0_128

3| § mkldnecimplicpuctrjit_uni _reorder_kernel_f32:simple_impl [0.001s1 0.000s [Furection Float32 256 AV AV

3| § mkldnncimplicpu :jit_athl?.tore-xSsSsB}!_r.u|wolutioll_[wd_te.{lnllldnn; 0.001s 0.000s [Furetion Float32; .. 128/256 AV A2

s mkldnecimplicpue: Jjit_ave5 12 _core_xBsBs 32x_fwd _kermel<Xbyak:: Zmm:: _ 0.001s(0.000s [Function Floatiz 1281256 AV AVIZ

o (0 [loop in jitoave 512 -core xBsBs 32x_comv._fwd ker.t] 0.015: 0.013s M8 Vectorized (Body) AWXSLZ 16; &4 Floatdz,; .. 512 AVESLZF.51E AVHS12.VNN

| § _jit_avx512 _core_x8s8s32x _corw_fwd_ker_t I U.OS)S- 0.000s [Function Type Conversions Float32; .. 512 AVHE12F_S1LAVHS 1 _WNNI_512

| (0 [loop in mkldnn:implicpustrjit_uni _reorder_kernel _f32:process_unroll_gen 0.001s1 0.001s1 Vectorized (Body) AV 8 Float32 256 AV

L L cimala_nob inkl nnac. M 0 ooooe o =R~ Classdd 6L a
Source | Top Down | Code Analytics | A by |\}"‘ dati |Emmb‘mﬂm’? |

Loop in _jit_avk512_core_x8s8532x_conv_fwd_ker_t Trip Counts @
O. 0 3 3 S Mo Trip Counts data available.

Collect Trip Counts to get more accurate recommendations and

Vectorized (Body) Total time vectorization efficiency data. EaS|ly |dent|fy VN NI
AVX512F_512; 0.033s usage in the
Self time .
AVX512-VNNI-512 = functions/loops

Instruction Set

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

RO Ofl i n e Roofline Video: https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017
Roofline Article: https://software.intel.com/en-us/articles/intel-advisor-roofline

The Roofline chart can be an effective means of identifying bottlenecks, and
determining what optimizations to make where, for maximum effect.

It is a good indicator of:

* How much performance is left on
the table

= Which loops take the most time
= Which loops are worth optimizing

» Likely causes of performance
bottlenecks

= What to investigate next

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

GFLOPs/S

Q._\.-" Q._'J' Q._\.?'
2 (o0 (o
8 o9 o

0 «
WO W W CPU Cap: FMAs

l D CPU Cap: Vector Add

@cpu Cap: Scalar Add
! 2y

>
Arithmetic Intensity (FLOPs/Byte)

S @ |

Software

https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017
https://software.intel.com/en-us/articles/intel-advisor-roofline

Memory Access Patterns & Dependencies

Memory Access Patterns (MAP) and Dependencies are specialized analysis
types. Use them when Advisor recommends.

= MAP detects inefficient strides and mask utilization information.

= Dependencies determines whether it's safe to force vectorization in a loop that was left
scalar due to the compiler detecting a potential dependency.

Summary % Survey & Roofline ™ Refinement Reports - /
Site Location ‘Loop—Carried Dependencies ‘Strides Distribution ‘Access Pattern | Max. Site...| Site Name |Recommendations

[loop in main at example.cpp:.. No information available 100% /0% /0% | Allunitstrides 288KB loop_site_2
No information ava ... No informatio.. Noinfor.. loop_site_3 % 1 Proven (real) de...

O [loop in main at example.cpp:.. @ RAW:1

0% /100% /0% | All const strides 584KB

O [loop in main at example.cpp:.. @No dependencies found loop_site_7 ¥ 1 Inefficient memo...
. Y
Memaory Access Patterns Report | Dependencies Report | ‘¥ Recommendations ! v \
1D Stride ‘Type Source MNested Func...‘Variable references ‘Max. Site...‘ Modules ‘Site Mame ‘Access Type
HP2 16 Constant stride example.cpp:88 arrayB 288KB vectorization... loop_site .5 Write
HP4 | (@ Parallel site information example.cpp:86 vectorization... loop_site_5

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

s

Software

34

Loop in Ibm::collisionSompSparallel@Z28 at collision.cpp:95

Intel® Advisor GUI ' 330.067s

Vectorized (Body) Total time

P — AVX512BW_128; 330.067s
" Elapsed Time s1.608 - arLoes i AVX512DQ_512: AVX512F 512 Sefftime

n :
Vector Instruction Set AVX512, AVX2, AVX GFLOP Count 161.877 Instruction Set
Number of CPU Threads 48 FP Arithmetic Intensity @) 0.12868)
» GINTOPS 043 VY Dynamic Instruction Mix Summary
» Memory 28% (7667136000) Bl
&) Performance characteristics ¥ Compute 25% (6865344000)
Metrics Total o » Vector 25% (6815232000) B
Total CPU 902,03 100% » Scalar < 1% (50112000)|
otal CPU ti ! S 100% 5
Time in 3 - ed I us 29: 38.3% > Mixed 20% (5311872000) @
ime in 3 vectorized loops » E—. .3%
Time in scalar code 556.74s — 61.7% Other 27% (7316352000) G
) Vectorization Gain/Efficiency [@ | Elpsed time: 51,605 TeR| Al Moduc: - | NSO | Loops And Funcions_~ || AllThreads - |
ine B
Vectorized Loops Gain/Efficiency ~ 2.65x B] Summary % Survey & Rooffine ¥ Refinement Reports : : -
CPUTi Vectorized L ~
Program Approximate Gain (> 1.63x [+ [5] Function Call Sites and Loops « Performance e TYpe Why No Vectorization? ectorized Loops
lasues Self Time | Total Time Vector ..|Efficency Gain Es...
‘ loop in Ibm::collisionSompSparallel®28 at collision.cpp:95] © 1 Possible ineffi... 330.067s 0 330.067sM Vectorized (Body) AVXs12 [F30% |242x
&) OP/S and Bandwidth = © [loop in Ibm:collisionompparallel@28 at collision.cpp:81] ¢ 1 Possible ineffic.. 140.808s@ 14080858 Scalar 8 vectorization pessible but..

71T

. Gsthr) Mtk Pk © loop in Ibm:collision$omps$ parallel@28 at collision.cpp:36] ©1Possible ineffici.. 6332250 6332250 Scalar 8 vectorization possible but...
floop in lbm:collisionompparallel @28 at collsion.cpp:d7] 15.206s) 15206s) Vectorized (Body) AvX512 [EBABINT | 7.55x

>GFLOPS 37, g‘g:‘;’: ::::: :;:3 :gp”)) :tg:: = © floop in Ibm:collsion$ompS$parallel @28 at collision.cpp93] 3560s] 333.647sHM Scalar & inner loop was already ve.
> GINTOPS 0.4308 01021% outof 2046 (Int64) INTOPS 2loop in bnzcoktontompSpanlB28 ol colion 70 11 Assumeddepen-|_0230s]_|141056:0 _|Sealer A vechor dependence preve- v

0011% outof 4094 (Int32) INTOPS __IN > < >
> CPU <-> Memory [L1+NTS GBls] 24.38 0.14% outof 17380 GBIs [bytes] Source | Top Down | Code Analytics | Assembly | ¢ jations | @ Why No
> L2 Bandwidth [GB/s] 307 051% outof 6049 GBIs [cacheline bytes] le: col
> L3 Bandwidth [GB/s] 28.16 24% outof 1171 GB/s [cacheline bytes] Line Source Total Time | % | Loop/Function Time | % | Traits |*
> DRAM Bandwidth [GB/s] 30.63 14% outof 224.8 GBIs [cacheline bytes] o1 tpragna ivaep

95 for(k = 1; k <= N2; ki+ }{ 4730s 330.067< —

[loop in 1bm::collisionompparallel@28 at collision.cpp:85]

7 Vectorized AVKS12BW_128; AVX512DQ _512; AVXS512F_512 loop processes Float32; Floatéd; UIntéd; UByte data type(

& Top time-consuming loops!

Loop Self Time 9%

“[leop in Ibm::collisionSompSparallel@28 at collision.cpp:95) 330.0675s 330.0675s 97 //pefine some local values

Olloop in isi 1i@28 at collision.cpp:81] 140.8077s 140.8077s 98 phin = phili] (31017 0.120s|

Olloop in lbm: SompSparallel for@22 at stream.cpp:26; 73.18691s 73.18691s 99 phin2 = phin*phin;

Olloop in lbm:colisionSompSparallel@28 at collision.cpp:36] 63.32187s 63.32187s 12’: iEVERSR = 1.0/zRe D1kl 45005 Appr. .

Olloop in Ibm::initSompSparallel@S2 st init.cpp:88 32769165 32.76916s

Hydradynamics (welnciru nrasanre inrerfacial farcel --

Selected (Total Time): 4730 v

Copyright © Intel Corporation 2019 intel-
*Other names and brands may be claimed as the property of others. (>

- /0 Software

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.
In a rush: Collect Survey data and analyze loops iteratively

Looking for detail:

) . NOTE: Roofline analysis =
1. Collect survey and tripcounts data [Roofline] ?:;;Vg e aralysts

. Investigate application place within roofline model

-

. Determine vectorization efficiency and opportunities
for improvement

2. Collect memory access pattern data

. Determine data structure optimization needs

3. Collect dependencies

= Differentiate between real and assumed issues
blocking vectorization

Copyright © Intel Corporation 2019 intel-
*Other names and brands may be claimed as the property of others. (. 36

Software

What is the Roofline Model?

Characterization of your application performance in the context of the hardware

It uses two simple metrics Lopst

= Flop count

= Bytes transferred T -
o

2 Operations

—
a; = bi +/>* di -

>
Arithmetic Intensity
FLOPS/Byte
— A% — Roofline first proposed by University of California at Berkeley:
1 W+3 R=4 4byteS =1 6 byteS Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009
Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013
righ | Corporati A ’
*CC())&yergnatn(?elsn;idcbor;):d:tn?;yzkgc9laimed as the property of others. O g lntel 37
[e

D;D

Software

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Roofline Model in Intel® Advisor

Intel® Advisor implements a Cache Aware Roofline Model (CARM)
= “Algorithmic”, “Cumulative (L1+L2+LLC+DRAM)" traffic-based
» Invariant for the given code / platform combination

How does it work ?
= Counts every memory movement
* |nstrumentation - Bytes and Flops
= Sampling - Time

Advantage of CARM Disadvantage of CARM

No Hardware counters Only vertical movements !
Affordable overhead (at worst =~10x) Difficult to interpret
Algorithmic (cumulative L1/L2/LLC) How to improve performance ?

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. A (|nte| 38
R —— e 1 |

3
D‘/—D Software

Roofline Chart in Intel® Advisor

kQ tly ¥ | Cores: 48 on 2 socket(s) © . | Y Default: FLOAT v | i Compare ~ e

Roof values are o | Rootin Vew Senge -
) - s [: Color Roofline zones
measured

< o
] '®) Show optimal scale for each Roofline view e
(0 Show one scale that accommodates all Roofiine views

Roofs Settings

[Use single-threaded benchmark results to build roofs ©

DOtS represent ﬂd“‘“““:ﬁ . 7 =l Roof Name Visible Selected Value .

. ke - S L1 Bandwidth %] %] 17379.21 |GBisec
prOﬁled lOOpS I L2 Bandwidth 4 [] (604853 |GBisec
. . L3 Bandwidth = [0 (11708 |aBisec
and fu nctions DRAM Bandwidth “ M 22485 |caisec
SP Vector FMA Peak [/] O 7576.52 |GFLOPS
SP Vector Add Peak [V} | 3788.61 |GFLOPS
) DP Vector FMA Peak [V M 378852 |GFlops
H | g h leve l Of i DP Vector Add Peak [] [0 189444 |cFops
. . Scalar Add Peak % O 25587 |GFLOPS
customization T R
0.014 I Loop Weight Representation ~ Cancel Default
- 0.01 0.1 1
Physical Cores: 48 ¥ App Threads: 48 @ self Elapsed Time: 7.500s Total Time: 330.067 s 2 Ciman Color Y

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Software

TUNING A'SMALL EXAMPLE WITH ROOFLINE

A Short Walk Through the Process

Intel® Confidential — INTERNAL USE ONLY

Example Code
A Short Walk Through the Process

26 vector<double> X(SIZE);
The example loop runs through an array of 27 Etypedef struct AoS
structures and does some generic math on some 28 {
of its elements, then stores the results into a iz jzs:iz o
vector. It repeats this several times to artificially 21 double padl;
pad the short run time of the simple example. 32 double pad2;
33 } AcS;
34 oS Y[SIZE];
51 = for (int r = 8; r < REPEAT; r++)
52 {
53 = for (int 1 = @; 1 < SIZE; i++)
54 {
55 X[i] = ((7.4 * Y[i].a + 14.2) + Y[i].b * 3.1) * Y[i].a + 42.0;
56 1
57 I }

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

4 @

3
0 - N Software

41

Finding the Initial Bottleneck
A Short Walk Through the Process

The loop is initially under
the Scalar Add Peak. The
Survey confirms the loop
is not vectorized.

Performance (GFLOPS) k@™ o« x B~ =

46.3

o 2
DP Vector FMA Ee,ak:*46’.3 GFLOPS--~ _

e -T2
DP Vecter Add Peak: 23.22 GFLOPS

[=] Function Call Sites and Loops | Type

40 [loop in main at roofline.cpp:53] | Scalar

The “Why No
Vectorization?” column
reveals why.

0.08 0.7
& vector dependence prevents vectorization Self Elapsed Time: 17.156s Total Time: 17.15%6 s Arithmetic Intensity (FLOP/Byte)

1.7

Why Mo Vectorization?

Copyright © Intel Corporation 2019

5 - 4 (intel)
Other names and brands may be claimed as the property of others. O
[

O Software

42

Overcoming the Initial Bottleneck
A Short Walk Through the Process

The recommendations tab

elaborates: the dependency is Site Location Loop-Carried Dependencies | Performance Issues
Only assumed. [+ [loop in main at roofline.cpp:54] @ No dependencies found & 1 Assumed depe...
o Issue: Assumed dependency present Memaory Access Patterns Report | Dependencies Report | ¥ Recommendations k 1
The compiler assumed there is an anti-dependency (Write after
read - WAR) or a true dependgncy (Reag after write - RAW} in the Al Advisor-detectable issues: C++ I Fortran
loop. Improve performance by investigating the assumption and
handling accordingly. .
Recommendation: Confirm dependency is real o IEEUE' AEEumEd dependency present
There is no confirmation that a real (proven) dependency is The compiler assumed there is an anti-dependency (Write after read - WAR) or
presentin the loop To confirm Run a Dependencies snayers a true dependency (Read after write - RAW) in the loop. Improve performance by

investigating the assumption and handling accordingly.
Recommendation: Enable vectorization

Running a Dependencies

. . . 5 -
analySIS confirms that_lt S false’ The Dependencies analysis shows there is no real dependency in the loop
and recommends forcmg for the given workload. Tell the compiler it is safe to vectorize using the
vectorization with a pragma. restrict keyword or a directive:

Copyright © Intel Corporation 2019 intel-
*Other names and brands may be claimed as the property of others. O g (. 43
[

D‘/—D Software

The Second Bottleneck
A Short Walk Through the Process

Adding a pragma to force the Perfomance GFLOPS) r@O . xB-I=
lOOp to vectorize SUCCGSSfUlly 4637 DP Vector FMA Pesk= 4631 GFLOF‘Sr
overcomes the Scalar Add Peak. NERCAL- - é?C-*?'?“-f‘-f‘-F'-E-Jér????-@@f'?----
It is now below L3 Bandwidth. - Pt)

1922 T e Lol
The compiler is not making the SHAL !--S-“?'?E’”-‘d-dﬂ%f‘*‘-Q?Q-QEL-O-ES----
same algorithmic optimizations, i ' '

so the Al has also changed. .

50 =] for (int r = 8; r < REPEAT; r++)
51 { 0.08 07
. Self Elapsed Time: 9.233s Total Time: 9233 5 Arithmetic Intensity (FLOP/Byte)
52 #pragma omp simd
53 = for (int 1 = @; 1 < SIZE; i++)
54 {
55 X[i] = ((7.4 * Y[i].a + 14.2) + Y[i].b * 3.1) * Y[i].a + 42.0;
56 i 3
57 }

Copyright © Intel Corporation 2019

5 - 4 (intel)
Other names and brands may be claimed as the property of others. O
[

0 " ————————————————————— 10 Software

44

Diagnosing Inefficiency
A Short Walk Through the Process

While the loop is now vectorized, it is

. E Function Call Sit d L
inefficient. Inefficient vectorization nchion et sifes and moaps

Vectarized Loops

Vector..

Efficiency Gain E... VL (Ve..

and excessive cache traffic both often | !ieop inmainat roofline.cpp:53]

AVX

[43% [1.73x 4)

result from poor access patterns, which can be confirmed with a MAP analysis.

Site Location Strides Distribution Recommendations

" loop in main at roofline.cpp:53] 50% f 50% / 0% ¢ 1 Inefficient memory access patterns present

Array of Structures is an inefficient data layout, particularly for vectorization.

SoA

AoS B2 B3

B4

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. O oo (lntel 45
I

E———————————— L]

Software

A New Data Layout
A Short Walk Through the Process

Changing Y to SoA layout
3 M« x B~ | =

moved performance up Performance (GFLOPS) @ L —
again. 46.3 -

26 vector<double> X(SIZE);

27 —typedef struct Sol

28 {

29 double a[SIZE];

30 double b[SIZE]; o

31 double pad1[SIZE]; at

32 double pad2[SIZE]; };‘..Br - e e

33 } SoA; . ggﬁjﬁ” ‘

- A2
34 SohA Y; . 'd._h..'-‘ = = .
1.7 E\%H?f:“

Either the Vector Add Peak 0 'DB D'?
or L2 Bandwidth could be Self Elapsed Time: 4.250s Total Time: 4250 s Arithmetic Intensity (FLOP/Byte)

the problem now.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

@ |

Software

Improving the Instruction Set
A Short Walk Through the Process

Because it's so close to an intersection, it's hard to tell whether the Bandwidth
or Computation roof is the bottleneck. Checking the Recommendations tab
guides us to recompile with a flag for AVX2 vector instructions.

I_o Issue: Potential underutilization of FMA instructions' Performance (GFLOPS) L3 @ M«

Your current hardware supports the AVX2 instruction set architecture (ISA), 46.3 -
which enables the use of fused multiply-add (EIMA) instructions. Improve
performance by utilizing FMA instructions.

E Recommendation: Target the higher ISA

xpB-l=

= 2
DP Vector FMA Peak-46.3 GFLOPS--

L - ?
* YectorAdd Peals 23,22 GFLOPS___

-
.-

Although static analysis presumes the loop may benefit from FIMA
instructions available with the AVX2 or higher ISA, no FMA instructions
executed for this loop. To fix: Use the following compiler options:

1

afore LG

"| Efficiency ‘Gain E.. ‘VL (Ve...
4" [loop in main at roofline.cpp:53] | AVX 83% 330x 4 h

[=] Function Call Sites and Loops S

After IR 1.7

[=] Function Call Sites and Loops

" | Efficiency ‘Gain E.. ‘VL (Ve...
p— : _ oou ; 0.08 07
+ * [loop in main at roofline.cpp:53] AVX2 [[100% |4.00x 4 Self Elapsed Time: 3.217s Total Time: 3.217s Arithmetic Intensity (FLOP/Byte)

Copyright © Intel Corporation 2019 (intelh

*Other names and brands may be claimed as the property of others.

Software

Assembly Detective Work
A Short Walk Through the Process

The dot is now sitting directly on the Vector Add Peak, so it is meeting but not
exceeding the machine’s vector capabilities. The next roof is the FMA peak. The
Assembly tab shows that the loop is making good use of FMAs, too.

Source | Top Down | Code Analytics || Assembly | ¥ Recommendations | @ Why N¢

The Code Analytics tab reveals an
unexpectedly high percentage of

Meodule: roofline_demo_samples.exe!0x140001124

Address | Line Assembly
scalar compute instructions. 0x140001124 Block 1: 3040000000 LOOp od
® 0x140001124 55 d 4, d ptr [r8+racé8+0x151e0 '
™ Static Instruction Mix Summary = 04140001126 55 vmov;p ymmS ymm\:.ror ptr [r8+roc8+ e0] y
The Only ¥ Dynamic Instruction Mix Summary'= © vmovaga ymmo, ymm
¥ Memory 33% (9120000000, 3) 0x140001132 55 vfmadd213pd ymmS, ymmd4, ymm2
Scalar math » Vector 33% (9120000000, 3) B | O0x140001137 55 vfmadd231pd ymmb5, ymm0, ymmword ptr [r8+rod8+0x177e0]
¥ Compute 33% (3120000000, 3) 0x140001141 55 vfmadd213pd ymm5, ymm4, ymm3
Op present > Vector 22% (6080000000, 2) @8 | \.5001145 55 d i d : . wg 5
iS in the » Scalar 11% (3040000000, 1) @ vmovupd ymmword ptr [rax+rcx*8], ymm
¥ MixEdlE' 11% (3040000000, 1) 0x14000114b 53 add rcx, Oxd lL
loop control. » Vector 11% (3040000000, 1) @ 0x14000114f 53 cmp rcx, Ox4c0 Oop 6@..,“
Other 22% (6080000000, 2) (D 0x140001156 53 jb 0x140001124 <Block 1>

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. O oo (|I'Ite| 48
R —— e 1 |

Software

One More Optimization
A Short Walk Through the Process

. : : Perf GFLOPS @Y« xB- =
Scalar instructions in the loop eriomanee (GFLOPS)

control are slowing the loop down.

46.3 -

Unrolling a loop duplicates its body
multiple times per iteration, so

. g 2 ~
control makes up proportionately 5 pandY S
- Bl'g_ﬁ_ -
less of the loop. 225 =
171 et
™ Static Instruction Mix sSummary = | =" |
¥ Dynamic Instruction Mix Summary'> 0.08 07
¥ Memory 47% (9120000000, 24) Self Elapsed Time: 2406 s Total Time: 2. 406 s Arithmetic Intensity (FLOP/Byte)
- Vect 47% (9120000000, 24) DN
v Cnmpc:.lrte 33% Esdsunnnnuu 17} °? #pragma unrol1(8)
b Vector 31% (6080000000, 16) GNED 53 #pragma omp simd
» Scalar 2% (380000000, 1) | 54 = for (int 1 = @; 1 < SIZE; i++)
¥ Mixed 16% (3040000000, 8) 55 1
> Vector 16% lamm,a}. 56 X[l] = ((?.4 * Y.Ell:i] + 14.2) + Y.b[l] * 3.1) * Y.El[i] + 42.3‘;
Other 4% (760000000, 2) 57 I h

Copyright © Intel Corporation 2019 intel-
*Other names and brands may be claimed as the property of others. O g (. 49
[

. @ @ O OO /10 Software

Recap

A Short Walk Through the Process

Performance (GFLOPS)

Original scalar loop. 463 -

Vectorized with a pragma.

4.250s
Switched from AoS to SoA.

Compiled for AVX2.

1.7 7

x B~ |=

R ([@ ™ «

DP Vector FMA Peak=46.3 GFLOPS- -~
e ~~T 2
P Vecter Add Pealg 23.22 GFLOPS

-
~

-

LT 2
. Scalar Add F'Ela - 579 GFLOPS

Unrolled with a pragma.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

E—————————]

0.7
Arithmetic Intensity (FLOP/Byte)

@

Software

50

Intel® Confidential — INTERNAL USE ONLY

Beyond CARM: Integrated Roofline

New capability in Intel® Advisor: use simulation based method to estimate
specific traffic across memory hierarchies.

= Record load/store instructions
» Use knowledge of processor cache structure and size

» Produce estimates of traffic generated at each level by individuals
loops/functions

Data transfer between levels

7
bl
[
=

=
oo
[
L]

CARM L2 L3 DRAM

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Integrated Roofline Representation

kQ ely v | Cores: 48 on 2 socket(s) °, Y FLOAT; No Callstacks; CARM (L1 + NTS); DRAM; Loads+Stores ‘I* Compare ~ =
10000 Operations z

Sd0149

(@) ~ - -2 B g 2
(® FLOAT () INT () INT+FLOAT -“ DP Vector FMA Peak__3784 95 GFLOPS.
S5 [] With Callstacks @ ‘ C h oose
Memory Level

| M carm (L1 +NTs) [L2 [] L3 [v] DRAM Scalar Add Pe: 2 GFLOPS. memory level
Memory Operation Type

() Loads () Stores (@) Loads+Stores

Default [Apply] | Cancel

100

w2’ e [loop in Ibm::collisionompparallel@28 at collision.cpp:95]
2 = ° °® Vectorized (Body) AVXS512; processes Float32; Float64; Uint64; UByte data type(s)
B e 0 Performance: 13.91 GFLOPS

-~ neRE CARM (L1 + NTS) Loads+Stores Arithmetic Intensity: 0.22 FLOP/Byte
1 e Self Time: 364.723 s A
ey - Self Elapsed Time: 8.530 s Hover for deta”.S
e 2 Total Time: 364.723 s
Self GB/s: 62.1291
Total GB/s: 62.1291

0.1 e o

FLOP/Byte (Anthmentc Intensay)
T T

0.01 0.1 1 10

Physical Cores: 48 © App Threads: 48 @ gl Elapsed Time: 8.530s Total Time: 364.723 s

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.
L ——

New and improved summary

() Program metrics

Elapsed Time 154.92s INT+FLOAT Giga OPS 11.85
Vector Instruction Set AVX512, AVX2, AVX, S5E2, SSE GFLOPS 10.16
Number of CPU Threads 1 GINTOPS 172
Effective Program Characteristics Utilization @Hardware Peak
GFLOPS 10.16 10% outof 100.1 (DP) FLOPS
201.7 (SP) FLOPS
GINTOPS 1723 3.2% outof 53.54 (Int64) INTOPS

106.2 (Int32) INTOPS
CPU <-> Memory [LL+NTS GB/s] 34.71 1.2e+3% outof 450.6 GB/s [bytes]

_/ Performance characteristics

Metrics Total

Total CPU time 15455 N 1 00%
Time in 3 vectorized loops 142.89s 92.5%
Time in scalar code 11665 B 7.5%

(v) Vectorization Gain/Efficiency

Vectorized Loops Gain!ET‘fic_iencfz' &3.37x 4%
Program Approximate Gain 3.19x

Copyright © Intel Corporation 2019

5 - 4 (intel)
Other names and brands may be claimed as the property of others. O
[

0 - N Software

Roofline compare

iI* 8 Compared Results + ‘I* 6 Compared Results v “I* 6 Compared Results ¥
R) Filter Out Selection T
- ______In_[(i p_r?ga_l i Inteqer Scal Cl Filt ol Integer Scal
t1.4008 e _PEm_ ... lleger ocai ear Filters ieger ocal
h‘"" Limie .i'_-1.4‘.')bt _.3
- -
o T ‘{",,'EE A ,.--"-FH' me T
gm ¥R %
Y1 ¢ .
AR lgh
17
k | A%
Q 1

Copyright © Intel Corporation 2019

: , 4 (intel)
Other names and brands may be claimed as the property of others. O
L

Software

59

Intel® Confidential — INTERNAL USE ONLY

60

Flow Graph Analyzer

Workflows: Create, Debug, Visualize and Analyze

-~ Flow Graph Analyzer 2019 1.1.17840 = E

Design mode

* Allows you to create a graph
topology interactively

* Validate the graph and explore
what-if scenarios

* Add C/C++ code to the node body

* Export C++ code using Threading
Building Blocks (TBB) flow graph
API

Analysis mode

* Compile your application (with
tracing enabled)

» Capture execution traces during the
application run

* Visualize/analyze in Flow Graph
Analyzer

* Works with TBB and OpenMP

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others. 0 A
—

D—/—D Software

Summary

2nd gen Intel® Xeon® Scalable processors have more performance capacity than
ever before, but code needs to be written to take advantage of it!
= Build a good foundation

— Use the right compiler flags and libraries

— Write your application to make good use of multithreading
— Use Intel® Advisor to plan your threading
— Use Intel® VTune™ Amplifier's Threading analysis to optimize your threading

»= Tune to the architecture with performance profiling tools.
— Find your hotspots with VTune™ Amplifier's Hotspots analysis type.

— Diagnose your bottlenecks with the Microarchitecture Exploration analysis type
— Dig deeper with a Memory Access analysis or Intel® Advisor

— Implement solutions based on your findings
— Use Intel® Inspector to make good use of Intel® Optane™ DC Persistent Memory

Copyright © Intel Corporation 2019

g : 4 (intel)
Other names and brands may be claimed as the property of others. 0
[

O Software

62

Get the Most from Your Code Today with Intel® Tech.Decoded

TECH. ~
DECODED

Visit TechDecoded.intel.io to learn how to
put key optimization strategies into practice
with Intel development tools.

#CodeModernization
ono

Big Picture Videos TOPICS:

Discover Intel’s vision for @ Visual Computing
k (t .
ey development areas ® Code Modernization

Essential Webinars @ Systems & loT
Gain strategies, practices
and tools to optimize
application and solution @ Data Center & Cloud
performance.

@ Data Science

Quick Hit How-To Videos

Learn how to do specific
programming tasks using
Intel® tools.

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

Performance results are based on testing from 2010 thru 2017 and may not reflect all publicly available security updates. See configuration disclosure for
details. No product or component can be absolutely secure.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as
"Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © Intel Corporation 2019 intel'
*Other names and brands may be claimed as the property of others. O) L_/
[N

D—/—D Software

64

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Configurations for 2010-2017 Benchmarks

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding ®
the specific instruction sets covered by this notice. Notice revision #20110804

4= Vectorized
N & Threaded

30x

| — Thre

10° Binomial Options Per Sec. SP

: fo— Vectorized
o <+ Serial

Performance measured in Intel Labs by Intel employees 2010 2012 2013 2014 2016 2017
Platform Hardware and Software Configuration
Unscaled L1 H/W
Core Cores/ Num Data L2 L3 Memory Memory Prefetchers HT Turbo o/s
Platform Frequency Socket Sockets Cache Cache Cache Memory Frequency Access Enabled Enabled Enabled C States Name Operating System Compiler Version
WSM Lt i 333GHZ 6 2 32K 256K 12MB 48MB 1333 MHz NUMA Y Y Y | Disabled (F599™@ IN511 10-301.7c20! | |ice version 17.012
X5680 Processor 20
SNB JpabiGan = | oeque | g 2 32K 256K 20MB 64 GB 1600 MHz NUMA Y Y Y | Disabled (P99 I5511 10-301.7c20! | |ice version 17.012
2690 Processor 20
VB @B 3 | oo e | 2 2 32K 256K 30MB 64GB 1867 MHz NUMA Y Y Y Disabled RHEL 3400.020.617.x86._64 icc version 17.0.2
2697v2 Processor 71
Intel® Xeon™ E5 . Fedora 3.15.10-) .
HSW ; 0.
S 2600v3 Processor 2.2 GHz 18 2 32K 256K 46MB 128 GB 2133 MHz NUMA Y Y Y Disabled 20 200.fc20.x86_64 icc version 17.0.2
Intel® Xeon™ E5 . RHEL . .
BDW A Freea| 2R |08 2 32K 256K 46MB 256 GB 2400 MHz NUMA Y Y Y Disabled "7 3.10.0-123.el7.x86_64 icc version 17.0.2
BDW zgggi/ 4X:3;esii | 22GHz 22 2 32K 256K 56 MB 128 GB 2133 MHz NUMA Y Y Y Disabled Ce;tzos 3.10.0-327. el7.x86_64 icc version 17.0.2
Intel® Xeon®
SKX ;) CentOS 3.10.0-))
Pl;t:gger:silxx 2.5 GHz 28 2 32K 1024K 40MB 192 GB 2666 MHz NUMA Y Y Y Disabled 73 514.10.2.617.x86_64 icc version 17.0.2

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in

fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Software

http://www.intel.com/performance

TECH.

DECODED

